US 2004/0102245 Al

gaming machine. Using an EPROM, it was not feasible to
store large amounts of game data relating to a complicated
3-D model. Thus, only 2-D object information used to render
the 2-D view was stored on the gaming machine.

[0047] However, 2-D games rendered on gaming
machines have also become more sophisticated and often
employ complex animations. When complicated animations
are used in a 2-D system, such as playing movies on a 2-D
object, a 3-D system can actually save memory because
more types of animation can be used with a 3-D system
versus a 2-D system without resorting to using movies,
which are memory intensive. In a 2-D system without using
movies, the animation properties that may be used are
simple two-dimensional movement and color cycling using
color palettes, which provide a limited visual appeal.

[0048] When only 2-D information about a 3-D object is
available, it is not possible to generate new 2-D views from
different viewpoints of the 3-D object. For instance, when a
picture of a playing card is rendered on current gaming
machines, 3-D information, such as the thickness of the card
is not stored. Thus, it is not possible to generate a 2-D view
of the playing card from an edge-on viewpoint, because the
thickness of the card is not known. As another example,
frames from a movie may be used as part of a game
presentation on a gaming machine. Each frame of the movie
represents a 2-D view from a viewpoint of a camera used to
film each frame. If the frame included a picture of a building
viewed from the front (e.g., the viewpoint captures the front
of the building), it is not possible to generate a new 2-D view
of the back of the building using because information
regarding the back of the building is not known.

[0049] One advantage of the present invention is the
potential game playing area used to present a game of
chance modeled in a 3-D gaming environment is greater
than the potential game playing area of a 2-D gaming
environment. For instance, a game of chance may be pre-
sented on each of the six sides of a cube modeled in a virtual
gaming environment. To play the game chance, 2-D views
of the cube from different viewpoints in the 3-D gaming
environment may be rendered in real-time and presented to
the player. As described below, in some embodiments, the
player may even select the viewpoint in the 3-D gaming
environment used to generate the 2-D view.

[0050] On current gaming machines, the cube would be
rendered as a 2-D object generated from the 3-D cube as
seen from a particular viewpoint. The particular viewpoint is
selected when the game is developed and only 2-D infor-
mation about the cube as viewed from the selected view-
point would be stored on an EPROM on the gaming
machine. Thus, a game of chance could be presented on the
sides of the cube rendered from the 2-D object that was
generated from the selected viewpoint of the 3-D cube and
stored on the EPROM. However, unless additional 2-D
objects were generated from different viewpoints, it is not
possible to present a game of chance on the sides of the cube
not visible from the selected viewpoint because the 2-D
object does not store information regarding the sides of the
cube not visible from the selected viewpoint. Further, even
if multiple 2-D objects were generated, it is difficult and time
consuming to generate enough 2-D objects to allow smooth
transitions between viewpoints captured by the 2-D objects.
It is also difficult to a scale a 2-D object, either smaller or
larger, without introducing distortion effects.

May 27, 2004

[0051] Distortion is also generated when scaling 3-D
objects. However, it is easier to deal with using specialized
3-D graphics cards because the card applies a bilinear
filtering process to the texels at render time. Without special
hardware, such as a 3-D graphics card, it would be difficult
to correct for distortion in real-time.

[0052] Finally, in a typical 2-D gaming system, due to the
limited flexibility of 2-D, outcomes for a game of chance
rendered in 2D and displayed on a gaming machine have to
be quantified and pre-rendered i.e. canned animations. Due
to the flexibility of a 3-D gaming system the outcomes can
be determined through user input giving an unlimited num-
ber of animations in response to the players input. By not
having to make a series of pre-canned animations but instead
determining the animation in response to the players input
saves many bytes in storage space requirements. In follow-
ing figures, details of methods and apparatus used to present
a game of chance generated from a 3-D gaming environment
are described.

[0053] Returning to FIG. 1, the 3-D gaming environment
100 includes three objects: 1) a rectangular box 101 on top
of, 2) aplane 114 and 3) a second box 127. The box 101, box
127 and plane 114 are defined in a 3-dimensional rectangular
coordinate space 104. Typically, surfaces of the objects in
the gaming environment are defined using a plurality of
surface elements. The surface elements may comprise dif-
ferent shapes, such as different types of polygons that are
well known in the 3-D graphical arts. For example, the
objects in the present information may be defined in a
manner to be compatible with one or more graphics stan-
dards such as Open Graphics Library (OpenGL). Informa-
tion on OpenGL may be found at www.opengl.org.

[0054] In one embodiment, the objects in the gaming
environment 100 may be defined by a plurality of triangular
elements. As an example, a plurality of triangular surface
elements 125 are used to define a portion of the surface 108
and the surface face 112. In another embodiment, the objects
in the gaming environment 100, such as box 101 and box
127, may be defined by a plurality of rectangular elements.
In yet another embodiment, a combination of different types
of polygons, such as triangles and rectangles may be used to
describe the different objects in the gaming environment
100. By using an appropriate number of surface elements,
such as triangular elements, objects may be made to look
round, spherical, tubular or embody any number of combi-
nations of curved surfaces.

[0055] Triangles are by far the most popular polygon used
to define 3-D objects because they are the easiest to deal
with. In order to represent a solid object, a polygon of at least
three sides is required (e.g. triangle). However, OpenGL
supports quads, points, lines, triangle strips and quad strips
and polygons with any number of points. In addition, 3-D
models can be represented by a variety of 3-D curves such
as NURBs and Bezier Patches.

[0056] Each of the surface elements comprising the 3-D
virtual gaming environment may be described in a rectan-
gular coordinate system or another appropriate coordinate
system, such as spherical coordinates or polar coordinates,
as dictated by the application. The 3-D virtual gaming
environments of the present invention are not limited to the
shapes and elements shown in FIG. 1 or the coordinate
system used in FIG. 1 which are shown for illustrative



